Social Constructionism in Physics and … Everything!

I just finished a semester at the University of Nevada focusing on Public Policy as part of my Masters in Public Administration. Throughout the semester we focused on rational models of public policy and decision-making, but we constantly returned to the ways in which those models break down and cannot completely inform and shape the public policy making process. We select our goals via political processes and at best develop rational means for reaching those political ends. There is no way to take a policy or its administration out of the hands and minds of humans to have an objective and rational process free of the differences which arise when we all have different perspectives on an issue.

 

Surprisingly, this is also what we see when we look at physics, and it is one of the big stumbling blocks as physicists try to understand quantum mechanics within the framework of physics laid out by Einstein and relativity. Throughout her book, Trespassing on Einstein’s Lawn, Amanda Gefter introduces us to the biggest concepts and challenges within the world of physics and how she and her dad attempted to make sense of those concepts within their own physics studies. A major influencer on the world of physics, and consequently on the adventure that Gefter took, was John Wheeler, who seemed to bring this idea of social construction to the rational and scientific world of physics. Wheeler described the idea of the self observing universe, to say that we are matter, observing other matter, creating our reality as we observe it. This idea is exactly the idea of social construction that I touched on in the opening note, but Gefter quotes a note in one of wheeler’s notebooks, “Add ‘Participant’ to ‘Undecidable Propositions’ to Arrive at Physics,” which sounds a bit like social construction to me as someone who studies public policy.

 

Social Constructionism is a theory from the social sciences. It is used to describe the ways in which a society or group comes to understand the problems it faces: who is at fault for the problem, who receives a benefit from our solution, who has the right to complain about a problem, and in what order should we attempt to solve our problems? These are all serious questions to which there is no perfect answer. We cannot identify a perfectly rational answer that will satisfy everyone. Our individual preferences will always be at play and our interactions in the decision-making process will shape the outcomes we decide we want and the solutions we decide to implement to reach those outcomes. In a sense, these large political questions are like the undecidable propositions in physics described by Wheeler. Politics is the outcome we arrive at when you add participants to undecidable propositions in society, and physics is what you arrive at when you add participants with limited knowledge and limited perspectives to the observation and understanding of major questions such as how gravity works.

 

We use questions of social science to inform the way we think about our interactions with other people and how we form societies. Social Constructionism reminds us that what seems clear and obvious to us, may seem different to someone else with different experiences, different backgrounds, different needs, and different expectations. Keeping this theory in mind helps us better connect with other people and helps us see the world in new ways. Similarly, physics informs the way we understand the universe to be ordered and how matter and energy interact within the universe. Recognizing that our perspectives matter, when it comes to politics, science, and even physics, helps us to consider our own biases and prior conceptions which may influence exactly how we choose to model, study, and experiment with our lives and the universe.

Social Constructionism in Physics and … Everything!

I just finished a semester at the University of Nevada focusing on Public Policy as part of a Masters in Public Administration. Throughout the semester we focused on rational models of public policy and decision-making, but we constantly returned to the ways in which those models break down and cannot completely inform ad shape the public policy making process. We select our goals via political processes and develop rational means for reaching those political ends. There is no way to take a policy or its administration out of the hands and minds of humans to have an objective and rational process free of the differences which arise when we all have different perspectives on an issue.

 

Surprisingly, this is also what we see when we look at physics, and it is one of the big stumbling blocks preventing us from linking Einstein’s theory of relativity with quantum mechanics. Throughout her book Trespassing on Einstein’s Lawn, Amanda Gefter introduces us to the biggest concepts and challenges within the world of physics and how she and her dad attempted to make sense of those concepts on their own. A major influencer on the world of physics, and consequently on the adventure that Gefter took, was John Wheeler, who seemed to bring an idea of social construction to the rational and scientific world of physics. Wheeler described the idea of the self observing universe, to say that we are matter, observing other matter, creating our reality as we observe it. This idea exactly the idea of social construction in politics and governance that I touched on in the opening note. Gefter quotes a note in one of Wheeler’s notebooks, “Add ‘Participant’ to ‘Undecidable Propositions’ to Arrive at Physics.”

 

Social Constructionism is a theory from  the social sciences. It is used to describe the ways in which a society or group comes to understand the problems it faces: who is at fault for the problem, who receives a benefit from our problem solution, who has the right to complain about a problem, and in what order should we attempt to solve our problems? These are all serious questions to which there is no perfect answer. We cannot identify a perfectly rational answer that will satisfy everyone. Our individual preferences will always be at play and our interactions in the decision-making process will shape the outcomes we decide we want and the solutions we decide to implement to reach those outcomes. In a sense, these large political questions are like the undecidable propositions described by Wheeler. Politics is the outcome we arrive at when you add participants to undecidable propositions in society, and physics is what you arrive at when you add participants with limited knowledge and limited perspectives to the observation and understanding of major questions about the workings of the universe.

 

We use questions of social science to inform the way we think about our interactions with other people and how we form societies. Social Constructionism reminds us that what seems clear and obvious to us, may seem different to someone else with different experiences, different backgrounds, different needs, and different expectations. Keeping this theory in mind helps us better connect with other people and helps us see the world in new ways. Similarly, physics informs how we understand the universe to be ordered and how matter and energy interact within the universe. Recognizing that our perspective matters, when it comes to science and physics, helps us to consider our own biases and prior conceptions which may influence exactly how we choose to study and experiment with the universe. Keeping social constructionism in mind also helps us understand why we choose to study certain aspects of science and why we present our findings in the ways that we do. We may never be able to get to a purely rational place in either science or politics (though science is certainly much closer), but understanding and knowing where social construction plays a part will help us be more observant and honest about what we say, study, believe, and discover.

Cutting Through

The truly great thing about physics is that it is universal. Literally. What we discover about physics here in the United States is true in South Africa, and what is discovered in South Africa can be learned just as well in Vietnam, and it all holds true on Jupiter or in the Andromeda Galexy. Physics is based in mathematics and repeatable experiments and it can be understood anywhere. It takes our perceptions and it boils them down into their most simplistic forms, tests them, repeats the test, and then determines what is real and what is unsupported. This means that physics has the ability to help us understand things in incredible new ways. We can better understand the universe and how it is held together, but only if we can study the physics and step beyond ourselves to understand what the tests, experiments, and math are trying to explain to us.

For Amanda Gefter, this is one of the best parts of physics. It takes our expectations, our assumptions, and what we want to be true, and completely ignores it. A good scientist, during their search for what is real and what is not, is able to cut through the noise of our expectations, beliefs, and desires to see the science underneath, holding things together.

Gefter writes, “That was what I loved about physics—that moment of pure surprise when you suddenly realize that what you had thought was one thing is really something else, or that two things that seemed so different are really two ways of looking at the very same thing. It was the perennial comfort that comes from discovering that the world is not remotely what it seems.”

By cutting through the noise of humanity, physics helps us to see the world more thoroughly. The world and the universe are not the way they simply appears to us from our perspective on Earth. Much of how we interpret and understand the universe is through what we see, but so much of the universe does not emit electromagnetic radiation or react with light in any way. How we perceive the universe depends on our point of view, and of our experience as human beings living on our planet. What physics does, is move beyond our experience of the universe to tell us how things are at any point in the universe, not just on planet Earth today. If we accept the world as it appears to us, then we somehow cease to move forward, and we begin to live in a story that never completely captures the reality we experience around us. We begin to live in ways that don’t add up, that put us at the center and don’t allow for the types of evolution and adaptation that we need to live in this universe responsibly. Physics takes the stories that we tell and re-writes them, adjusting the language to be the language of mathematics, giving us a new perspective from which to tell our story.

Creating History

Physics often times does not align with what we expect. But really, there is no reason that the physics we experience here on our planet with our limited senses should lead us to perfectly predict how physics and reality play out across the universe. Trespassing on Einstein’s Lawn is an excellent physics book because it takes readers with little scientific background through the complex paradoxes and challenges of physics to explore the furthest reaches of our scientific thought. Author Amanda Gefter herself is not a physicist, and learned to understand physics first as a hobby, and later (as detailed in her book) as a bit of an obsessive search for the universe’s ultimate building block.

Along her journey, Gefter introduces us to John Wheeler, a physicist who wrote with an almost poetic style when describing the complex science that he worked on. Wheeler helps us understand that one of the things within human experience that is so fundamental to how we view reality, is not quite as solid as we would expect. He is quoted  by Gefter writing, “We used to think that the world exists ‘out there’ independent of us.” When we study physics we are actually adjusting and changing the past. We are not looking at an independent system that existed before us a certain way. When we measure and observe the past, we actually can change it from the present. This is explained by Gefter with further help from Wheeler by describing experiments with photons to measure how sub-atomic particles travel. Light is made of photons, but it acts as a wave, with probabilities based on the wave function determining where the photons of the light will be. Once, however, we make an observation of a single photon, the probabilistic wave function ceases to exist, and the photon acts as a particle, and not as a wave. Up until we make our measurement however, the photon is a series of probabilities and behaves as a wave, the same way a wave behaves in the open ocean, and not as a particle on a direct path.

Gefter writes, “Delayed-choice experiments have been carried out in laboratories, and each time they’ve worked just as wheeler suggested. It’s an established scientific fact: measurements in the present can rewrite history. No, not rewrite. Just write. Prior to observation, there is no history, just a haze of possibility, a past waiting to be born. ‘There is no more remarkable feature of this quantum world than the strange coupling it brings about between future and past,’ Wheeler wrote. If observations we make today can create a billion-year-old past, so, too, can observations made in the future help build the universe we see today.”

In the quote above Gefter is describing the same experiments with photons, but looking at photos billions of light years away from us that had to travel across the universe and split on one side or another of a black hole, universe, or other star to reach one of our telescopes. The path taken by a given photon is best described by the probabilistic wave function with all the features, such as frequency and amplitude, of physical waves that we can observe on earth. But once we make an observation in a telescope to measure the path the photon took around a galaxy, black hole, or star, the wave function no longer describes the photon, and the photon has to have followed a set pathway, a pathway that was not determined until it reached our planet, billions of years after it was emitted from its original source.

The physics is beyond my ability to describe, but the key point is that we are human and have limited brain space and experiential ability. We can only experience first hand so many sensations and realities. More possibilities exist than we can experience and understand. Thinking that we can ever describe reality in the most comprehensive manner is a great dream for scientists and physicists to work toward, but we will always be limited by the fact that we are human and can only experience the world in so many ways. Things that we take to be so certain, like history and the passage of time, seem to be interconnected with the present and the future in ways that we can’t quite explain right now.

Only Referencing the Inside

The problem of physics and the universe being relative to observers haunts Amanda Gefter in her book Trespassing on Einstein’s Lawn. Throughout the book she writes about the challenge of understanding physics and finding a set, definitive, absolute reality within physics. Motion, matter, electromagnetic waves, particles, and time all seem to change relative to an observer. The observer does not need to be alive, but it just any given point of reference.

 

During her quest to better understand physics and find an objective agreed upon base for reality Gefter spoke with physicist Fotini Markopoulou. Recounting the conversation Gefter writes, “Was there some way to continue talking about the universe while only referring to it from the inside? Markopoulou seemed to think so, but it came at a serious price. It meant tossing aside ordinary Boolean logic and replacing it with a kind of logic that depended on the observer. It meant redefining what we mean by “true.” It meant stripping physics of the ability to make absolute statements about ultimate reality. Propositions were no longer true or false. They were true or false according to some particular observer.”

 

Einstein’s theories of relativity tell us that observers make a big impact on how the universe is measured and understood. Where an observer exists in space, the observer’s scale, and its motion all impact the measurements for the observer.  Gefter was on a quest with her father to understand and determine what it is in the universe that is the absolute reality of the universe. What is the basic constant that forms the simplest building block of all of the universe? Here quest was to find the one thing that was not relative to a reference point and an observer and to find the one thing that everyone and everything in the universe can point to and say “yes, that there is X, and it is always X, and is X for all of us who look at it.”

 

The challenge is that we are all within the universe. We are all matter and each point within the universe is a point of the universe and is itself changing and interacting with other things in the universe. There is no way to stand outside the universe and set a universe clock to a specific time and see everything a specific way. There is no ‘outside’ to the universe, and that means that any point of reference or timeframe is relative to others based on a host of factors. Gefter wanted to find an objective piece of the universe that was not determined relative to another point, but the only way such a point could exist is if it were outside the universe, something we philosophically understand to be impossible.

A View from Nowhere

Physics is all around us, taking place within our coffee mug, within jet airplane engines, and on the roof above our head. Everywhere we go, physics goes, and everywhere we look, we see physics. Across the universe, magnified at the end of an electron microscope, and throughout time, physics connects everything there is. Amanda Gefter in her book, Trespassing on Einstein’s Lawn, describes the importance of viewing physics within a totally inclusive system. Because we are walking physics experiments, we alter the physics of the world around us and have an impact on every system that we study and interact with. In fact, it is not just us but everything that interacts or has the ability to observe a phenomenon in physics that acts upon and changes the system.

 

This is important because it shapes the way we study and understand physics and reality. There is no way for us, or anyone or anything else, to stand outside the universe and look back in at the universe to make an observation independently. If you are observing the universe you are within the universe and you are part of the universe. Describing her efforts to learn and understand what this means for physics, Gefter wrote,

 

“I had already learned that both relativity and quantum mechanics were trying to tell us the same thing: we run into trouble when we try to describe physics from an impossible God’s-eye view, a view from nowhere. We have to specify a reference frame, an observer. But now I finally understood the real tension between the two theories. The whole mess could be summed up with one question: where’s the observer?”

 

General relativity tells us that everything is inside the universe, but when we look at quantum mechanics we are trying to look at incredibly tiny particles that form the building blocks of the universe. A tension arises because we appear to be able to separate ourselves from the system in which our experiments take place, but the reality is that we are making an observation of the system, which means we are interacting with the system. Even when we take the human part away from our experiments and our systems, we still leave behind something to make an observation to somehow detect what is taking place. An observer does not have to be conscious and is better thought of as a frame of reference or something that can be changed and adjusted within the system. The only way we could truly understand pure physics it seems, is to be completely outside the system to look in and observe without changing the system, but this completely violates what we know is possible about how our universe works.

Violating General Relativity

Physics today is hard and incredibly head-spinningly confusing. That does not mean, however, that it cannot still be fun and presented in a way that makes us think deeply about the nature of the universe while still enjoying the science of how our universe exists and behaves. Amanda Gefter did not set out to be a science journalist, but she parachuted into a career as a science journalist and has a real skill for combining difficult scientific principles and relatable, real life jokes, puns, situations, and experiences. In doing so, Gefter is able to make physics and science engaging, which is a real and important skill for scientists, technocrats, and skilled professionals to develop. Learning to be engaging, even with the boring and the difficult, is what our society needs in order to convey the importance of the dull and often times drudgery of difficult thought work.

 

And that brings me to Gefter’s writing about General Relativity, the scientific principle laid out by Einstein that has been reinforced by recent discoveries such as gravitational wave experiments. In our universe, there are certain things we can’t measure simultaneously. We can know one item with certainty but in making a measurement or observation we suddenly are unable to identify or know another related aspect with certainty. Tied together in this type of relationship are time and total universal energy. We seem to be able to potentially measure one or the other, and we must eliminate one when trying to make predictions or models of the universe based on an understanding of the other. Describing this relationship, Gefter writes:

 

“When you think about it, it ought to have been obvious from the start that there’s no possible way to have both general covariance and a universe that evolves in time—the two ideas are mutually exclusive, because for the universe as a whole to evolve in time, it must be evolving relative to a frame of reference that is outside the universe. That frame is now a preferred frame, and you’ve violated general relativity. It’s one or the other—you can’t have an evolving universe and eat it, too.”

 

There are two things I want to pick out of the quote above. I am not scientifically literate (within the physics world) to fully pull apart the ideas about general relativity, general covariance, and how the universe changes in time, but I do understand Gefter’s point about a preferred reference frame. Relativity tells us that the universe is observer dependent, meaning that how you observe the universe shapes the reality that you experience. The experiments you do, what you can see, feel, measure, and interact with has an impact on the physics of the universe around you. This does not seem to apply only to conscious observers, but other types of observers such as stars emitting light rays, giant space rocks traveling to our solar system from other solar systems, and even quantum particles popping in and out of existence along the horizon line of a black hole. Everything in the universe is in the universe and therefore every action impacts the universe. We are never perfectly outside the universe in a true world or perfect perspective from which we can point back and say “that, right there, is the universe as it actually truly exists.”

 

Second, physics does not have to be all technical and serious. In complex writing we often want to display how smart we are and how well we understand the subject by using the language and writing style of smart academics. A recent podcast from the Naked Scientists highlighted work from researchers that show that journal articles are getting harder to read, and that means science is becoming less accessible. However, if you put the ego aside you can write about science without having the need to prove to others that you are smart and can write in complex styles. In the quote above Gefter manages this, and even includes a fun variation on a popular idiom. Finding ways to do this in science is important because it shows others that you can be a real human being and an ordinary person and still be interested enough to learn a little about cutting edge science.

Spacetime as a Wave Function

Amanda Gefter dives into complex physics in her book Trespassing on Einstein’s Lawn, and helps us better understand the challenges of modern physics research today. When we look out into space we see stars and planets and if we look really closely with telescopes we see asteroids, galaxies, and lots of dust floating through space. What physics tells us exists within the empty space between those objects (and indeed within all space) is spacetime. Spacetime is a thing. It bends and is warped by matter and it can ripple through the universe and change the physical matter that we can see and feel.

 

Gefter describes our complex understanding of spacetime as a wave function, describing probabilities of our observations. She writes, “When it comes to spacetime, though, there’s no such thing as spacetime at an instant, because spacetime contains all instants. And you can’t have spacetime evolve in time, because it is time. The only way forward seemed to be this: break four-dimensional spacetime into three dimensions of space and one of time, then describe the spatial portion as a wave function that can evolve relative to the dimension you called ‘time’.”

 

Gefter’s quote is how we as humans experience spacetime. We do not experience all instances of space and time at one exact moment, but instead we experience space and our movement through space over time. Here on earth, where things operate on scales that seem constant and continuous to us, this works. But once we start operating on different scales in different parts of the universe with different masses, different speeds, and different energies, the experience of three dimensional space and one dimensional time break down. Gefter continues:

 

“Different observers can slice up spacetime in different ways. So when we decide to quantize only the three dimensions of space, we have to choose certain coordinates to call ‘space’ and others to call ‘time.’ But whose space? Whose time? Making any kind of choice would suggest that one observer had a truer view of reality than all others. But that can’t be so. That was Einstein’s whole point: the laws of physics must be the same for everyone.”

 

What is so concrete and clear in our world and in our experiences as human beings falls apart on scales beyond those that we can observe unaided with our senses. The universe is more complex and more challenging than we often imagine, and the priors that we bring to conversations, thoughts, and observations impact the way we come to understand the universe. There is no absolute time from which we can measure the universe, because as soon as we set a specific reference clock, physics breaks down for another observer somewhere else in the universe at a different scale of mass and energy. Similarly, there is no clock sitting outside the universe ticking away the lifetime of the universe as a whole. Spacetime is relative according to Einstein, and while we may be able to break spacetime into a wave function that predicts probabilities of space throughout time, we have to understand that the way we break space and time apart is specific to our observation and that both space and time change for other observers who separate spacetime differently from ourselves.

 

But why is any of this important? With physics and a deeper understanding we can begin to see that we are not outside the universe and our observations are not at the center of the universe. We are matter arranged in a way that allows us to observe other matter. Our perspectives and views are incomplete and the observations and perspectives we adopt shape the reality we can measure. There is a parallel between physical science and social science in this way. We may not realize it but our brains turn us all into social scientists, walking around with a megacomputer carefully recording observations of human behavior and reality, analyzing patterns, and crunching data to help us understand our position. If we assume that our observations and our reference frame is the one absolute and correct frame, then we miss the fact that the reality we live in is relative to where and when we make observations and how we have chosen to separate different points and parts of that reality. Perhaps not everything in the social sciences is completely relative since we do live in a constrained world, but we should recognize that there are not any absolutes living outside of our universe measuring us or anything else from the outside.

What Reality Ought To Be

The universe is filled with paradoxes, but often times those paradoxes seem to be the result of how our brains and thinking work. Amanda Gefter addresses this in her book, Trespassing on Einstein’s Lawn. In the book Gefter describes how she found her way to a career as a science journalist, something she never set out to do directly, and at many points never believed would be possible for her. Her descriptions of science and physics are as much a description about the progression of human life that we all share, and it is a perfect opportunity to reflect on paradoxes within our personal lives and within areas like science.

 

Gefter describes the challenges of quantum mechanics and the reality that we can measure some parts of the universe one way, but get a different result if we measure them a different way or at a different time. Also, with quantum particles, we seem to be a able to measure with incredible precision a particle’s position or its momentum, but not both. We can accurately look at where a particle is, but in doing so we can’t describe where it is going. Alternatively, we can look at where a particle is going and how it is moving through space, but we can’t actually then pinpoint where in space it is. This measurement paradox is challenging and creates a lot of problems and further questions for scientists. Describing the way we are challenged by measurements and observations and our inability to separate ourselves from the measurements and observations we make, Gefter writes the following:

 

“There’s no normal reality lurking behind the quantum scene, no objective Einsteinian world that sits idly by regardless of who’s looking. There’s just the stuff we measure. The whole thing reeked of paradox, but as Feynman said, ‘The ‘paradox’ is only a conflict between reality and your feeling of what reality ‘ought to be.’”

 

I think this idea extends well beyond physics throughout our lives. A paradox is something that sounds like it would be correct and obvious, but leads to a conclusion or reality that could not possibly exist. Paradoxes are contradictions that break our expectations and are outcomes that run counter to our intentions. With this framework, we can begin to see that Feynman’s description of paradoxes extends beyond the world of science into any aspect of our lives today.

 

The physical universe and the ever confusing and challenging world of particle physics is under no obligation to act in ways that our limited brains and current extent of mathematical and scientific understanding would expect. We make predictions based on observations, but we are never playing with all the data and never have a complete set of all possible observations when we make our predictions. Our ideas of what should and should not be possible are shaped by our experiences and by all the information we can hold in our head, and that information is astoundingly limited compared to the vastness of possibilities within the universe.

 

Looking at our actual day-to-day lives, we can see that this concept translates into the expectations, generalizations, and predictions we make about our futures and desires. I live in Reno, Nevada, and at the moment housing prices in Reno have increased dramatically as the number of homes and quality apartments has remained level while economic development and population growth have occurred. One result of a stronger economy and a lagging housing infrastructure is increased home costs, and fewer living accommodations for those who want to live on their own. I was recently running with a friend of mine who stated that an individual graduating from college should be able to afford a starter home if they are in an introductory position and have a solid and stable job. My friend is not wrong to say this, but his statement is simply a value judgement based on the experiences of his family and expectations that have been shaped by where he has lived and what he has been told he should do to be successful. Whenever we begin talking in terms of how things should be, we need to recognize that we are making value judgements, and that we are expressing only our ideas of what reality ought to be. The conflicts this creates and the paradoxes it leads us to are not paradoxes that actually exist in the universe, they are just situations where the real world does not align with the way that our brains comprehend our experiences.

 

The set of possibilities within the universe is virtually infinite as far as the human mind is concerned, and thinking that we know how things should be is to some extent arrogant and irrational. The world and universe in physical terms and in terms of our social ordering can have many forms, and if we try to force the universe to be the way that makes sense from our perspective, we will simply be frustrated and confused in a spiral of paradox. When we take away our opinion and think through our expectations, we can begin to see the world more clearly and better react to and adjust to the actual realities of our world. When we take away the expectations of how the world ought to be, we can live in the world we actually have and learn and adapt with greater skill.

Measuring the Universe from the Inside

The human mind is an amazing tool, but it does go astray from time to time and some of our logical fallacies trip us up. The world of physics, particularly the physicists who are pushing the edge of physics knowledge, run into a lot of challenges that clash with the way we typically think about and understand the universe. Our physics today shows us where our logical fallacies lie and how we must tread the line of reason and nonsense to understand what is truly taking place in the universe.

 

One of the challenges that modern physics presents us with is the need to abandon the idea of objective observers outside the system. Everything in the universe is within the universe. That sounds obvious enough, but it means that everything that is, all matter, all energy, and any observer is in the universe itself. This is important because it means you cannot step outside the universe and look in to see what is happening to make observations and measurements. From the moment the universe began, it has been all there ever is, and there was never anything outside the universe as best as we can understand it.

 

Amanda Gefter tackles this in her book Trespassing on Einstein’s Lawn where she writes, “Of course, if that was true, you couldn’t have an observer to make the measurement in the first place. The observer’s got to live in some kind of reality. That was the problem with Bohr’s view. If measurement is the arbiter of reality, then the measuring device has to sit outside reality—which even within the bizarro universe of quantum mechanics, is downright impossible.” Gefter wrote this in response to the challenges of describing particles within quantum mechanics. There are some properties of particles that you can’t define very precisely, or at least that you can’t define simultaneously. We also look at particles within the wave function, indicating that particles follow a general probability pathway until we decide to make a measurement and determine where they are and how they behave.

 

But,  because we are inside the universe, when we make an observation we change the system. We shape the reality that we are trying to measure because we are matter and our measurement tools are made of the same building blocks as the things we are trying to measure, so everything interacts and mutually shapes and has an impact on everything else. There is no way to stand outside the universe and there is no way to observe and measure the system without interacting with it, and when you do, you influence the observations you make.